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OPERATIONAL PARAMETERS OF A 2.0-MeV RFQ LINAC*

0. R. Sander, F. 0. Purser, U. P. Rusthoi, AT-2, M5-H8
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

Summar:

After extensive upgrading, our radio-frequency
quadrupoie (RFQ) linac is again installed on the accel-
erator test stand (ATS). The measured parameters of
the RFQ, such as the output transverse emittance,
transmitted beam, average eneigy, and energy spread is
presented.

Introduction

In table I we show the design parameters of our
RFQ. We made extensive experimental and theoretical
stuaies' on our first version (RFQ1). In these
studies we showed that RFQ vane voltage has a sensitiv-
ity to alignment errors that includes a scaling tactor
equal to (L/A)Z, where L is the RFQ lengti, and A is
the electric wavelength. Because of the long length of
our RFQ, we reduced the machining tolerances on the
vanes of our second version, RFQ2, In addition, seven
" dinole shorting rings were installed, which moved the
dipole passhand from 4 MHz below the quadrupole mode
to 30 MHz above the quadrupole mode. The rings were
installed with alternate horizontal and vertical shorts
and have eliminated the dipole node problem. The lon-
gitudiral-field tuning was obtained with a modest
amount of vane shimming and with a new type of end
tuner.? At low power, the measured “Q" of RFQ2 was
6600 or 67% of the theoretical value that was found
using an RFQ model with no shorting rings. At full
power, the Q value rose to 7500. We also improved the
manifold and RFQ coupling. We calculated that 78% of
the ?onfr is in the RF(Q; the remaining 22% 1s ir the
manifolid.

Our new source and accelerating column® supplied
a Tow emittance, 100-keV H" beam to a low-energy beam-
transport section (LEBT), see fig. 1. Because we ob-
served large emittance growth in transport lines in
excess of one meter, we made the LEBT as short as pos-
sible by using permanent-magnet quadrupoles (PMQs) ex-
clusively to match the beam to the RF{, The program
TRACE" was used to model the %0-keV region, the column,
and the LEBT, and to match the 100-keV beam to the RF(Q

TABLE I

ATS RFQ DESIGN PARAMETERS

Frequency 413 MHz
on H-

Number of cells 356

Length 289,23 cm

Vane voltage 111.34 kV

Average radius, rg 0.394 cm

Final radius, a7 ' 0.270 cm

Final modulation, mpy - 1.830

Intt{al synchronous phase, ¢¢ «90°

Final s achronous phase, o ~30°

Peak surface field 41,4 MV/m
(2,06 Kilpatrick)

Nominal current limit 167 mA

Nominal accentance at 100 mA 0.232n cemrad
{normalized)

*Work supported by the US Department of Defense, e~
fense Advanced Research Projects Agency, and Ballistic
Missile Defense Advanced Technology Center.
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Fig. 1. ATS experimental setup.

input requirements. Using a miniaturized, electric-
sweep emittance scanner,® we obtained good agreement
between TRACE predictions and measured emittances at
ES2 located 10 cm upstream of the RFQ match point. By
varying the amount of neutralizing xenon injected into
the 20-keV region, we were able to change both the
emittance area and shape at ES2, We were unable to
obtain a perfect beam match to the RFQ with the limited
space and fixed-strength PMQs in the LEBT. However,
oecause the RF(Q acceptance 1is greater than the beam
emittance, substantial transmission rates were predict-
ed using PARMTEQ, even with poor matches. The typical
input beam current at the RFQ entrance was 100 mA, and
typical, normalized rms emittance areas in the x- and
y-planes were 0.013 and 0.022n cmemrad, respectively.

Qutput Beam Diagnostics

We measured the total transmitted beam with a
wide-band pulse-current transformer. The transverse
emittance was measured with an automated slit-and-sand-
wich collector (ES3) positioned 7 :m from the exit of
the RFQ. We me2asured the beam momentum with a focusing
spectrometer that consisted of two quadrupoles, used
primarily for vertical containment, and a horizontal
63° bending magnet with circular pole tips. We cali-
brated the spectrometer with a low-energy xenon beam
whose mementum equaled that of the expected 2.0-MeV K"
final beam. The momentum resolution was 0.1%, and the
absolute accurwy of the spectrometer was within 0,16%
of the predictions based on a POISSON model of the
banding iracnet and a TRACE model oV the spectrometer.

Results

The RFQ reached full power after « conditioning
period of about 150 hours, During conditioning the
RFQ had fewer spark downs when beam was present in the
structure. A plot of the transmission, both measured
and predicted with PARMTEQ, versus rf vane voltage 1s
shown in fig., 2. We determined the vane voltage V in
the RFQ by satting

V“le’”z [ (])

where P {s the power as determined from the pickup laop
{n the RFQ. The scale factor S was determined by using
eg. {1) and the measured value of P and the predicted
value of V that occurred when the RFQ transmitted half
of the maximum possibte curvent, The waximum trans-
mission was GO mA for 100-mA injected beam and was
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Fig. 2. Measured and predicted transmission versus
vane voltage.

siightly larger than the 57 mA pvedicted by running the
measured input beam emittance through the PARMTEQ model
of our RFQ. If the heam were perfectly matched to the
RFQ, we would expect 90 mA to be transmitted. By em-
pirically adjusting both the xenon flow into the 20-keV
region and extractor voltage, we increased the trans-
mitted current to 75 mA out of 106 mA injected into the
RFQ. Tests showed that this increase was not the re-
sult of adjusting the input beam energy but was the
result of better matching the beam emittance to the RFQ
acceptance. Recent TRACE computer studies showed even
better matches can be obtained, resulting in better
transmission, by repositioning the PMQs in the LEBT.

In fig. 3a and b, we show the observed and pre-
dicted energy spectra for various vane voltages. At
designed power, the accelerated beam had no low-energy
component and had the predicted energy of 2.0 MeV. The
measured FWHM was 1.3% and compared well with the pre-
dicted value of 1.2%.
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fig. 3a. Measured beam enerqy spectra
for various vane voltages.
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fig. 3b. Beam energy spectra, predicted by PARMTEQ,
versus various vane voltages.

Because the horizontal emittance slits at E54 were
severely eroded during the spectrometer measurements,
no reliable horizontal emittance values could be ob-
tained. Preliminary results indicate that the normal-
ized rms emittance in the vertical plane was between
0.02 and 0.03w cmemrad.

Conclusions

We have successfully operated the longest KFQ
(measured in normatized units L/A) with an accelerated
H™ beam having the highest power ever obtained with
such a structure. The transmission and energy measure-
ments of our RFQ beam are in good agreement with the
PARMTEQ predictions. By rearranging the PMQs in tha
LEBT, we expect to improve the beam matching to the RFQ
and, thereby, increase the transmission. Because of
the high power density of our RFQ beam, we must modify
the precent slit-and-collector method or replace it
with nonintercepting methods to measure the transverse
emittance.
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